River Analyst User Manual

River Analyst is a database application framework built with the Django web application framework (Python)
to leverage fast river ecosystem analyses.

Installation
Linux

e Clone this repository:
git clone https://github.com/beatriznegreiros/river-analyst.git
o Make sure to have pip3 and virtualenv installed by:

sudo apt update
sudo apt install python3-pip
pip3 install virtualenv

e Create new virtual environment:

python3.9 -m venv /path/to/new/virtual/environment
e Activate new virtual environment:

source /path/to/new/virtual/environment/bin/activate
e Install dependencies:

pip3 install -r requirements.txt

Windows

e Clone this repository:
git clone https://github.com/beatriznegreiros/river-analyst.git
e Make sure to have Anaconda installed.
e Create conda environment:
conda create --name [env_name] python=3.9
e Activate conda environment:
conda activate [env_name]
e Install dependencies:

pip3 install -r requirements.txt

Usage
Database architecture
RA database structure is composed of several tables (data models) such as IDO (Interstitial Dissolved

Oxygen), which is linked to a MeasPosition (measurement positions) via a foreign key. The figure below
illustrates the database architecture through an Entity-Relationship diagram:

https://www.djangoproject.com/
https://pypi.org/project/virtualenv/
https://docs.anaconda.com/anaconda/install/index.html

‘ SedSamplingTechnique 1

‘ samp_technique

£

A

A

SubSurfaceSed

‘ SurfaceSed

meas_position

[sedimentological variables]

meas_position

[sedimentological variables]

0

0
(< Ipbo

MeasPosition
name
River | river
river survey
collected_data
Survey date
name | description
o 5
participants
dates y
z (bed elevation)
coord_system
CollectedData pos. rel WB
collected_data disgharge

WaterQual

pH
cod

bod

temp_c
do_mgl

do_sat

no_ 3

meas_position

turbidity _ntu

wl (water level)

Hydraulics

meas_position
v_X_ms

vV_y ms
v_z_ms

kt

kt_2d

v_bulk

Kf

meas_position

meas_position
sediment_depth

kf_ms

Morphology

8

sediment_depth
idoc_mgl
idoc_sat

temp_c

meas_position
morphological_features

morphological _unit

Entity Relationships

macrozoobenthos_species
macrozoobenthos_count
plantings_species
fish_species

fish_count

fish_redd_count

=< Many-to-Many
Biota
— —}—< One-to-Many
meas_position
—}—— One-to-One

(O Non-mandatory

Figure 1: River Analyst database architecture

Figure 2 and 3 provide detailed descriptions of the several attributes within each of RA data models described
above.

Running the app

¢ Go to repository directory
cd path/to/river-analyst
o Make migrations (optional)

python3 manage.py migrate Obs.: Migrations are in principle python commands wrapped around
SQL passed from the Django framework to the sql database.

o Run the server locally
python3 manage.py runserver
e Create superuser for having full admin rights over the app:

python3 manage.py createsuperuser

Initializing a new database with template CSVs

o Add data to the csv templates under the path riveranalyst/river-analyst/media/
e cd to the riveranalyst/utils directory cd riveranalyst/utils
o Execute scripts to initialize targeted data models
— It is important to begin with populating the MeasPosition model, which is where all data models
connect:
x Here, it is crucial that the field meas_position is unique and contains no typos. This field will
be used to generate foreign keys to link data models. python fill_measpositions_tab.py
— Then, any data model can be populated afterwards, for instance:
* the field meas_position needs to match the names given in the MeasPosition data model.
- python fill_surf_tab.py for filling the SurfaceSed data model
python fill_subsurf_tab.py for the SubSurfaceSed data model
python fill_kf_tab.py for the Kf (Riverbed Hydraulic Conductivity) data model
python fill_do_tab.py for the IDO (Interstitial Dissolved Oxygen) data model
python fill _hydraulics_tab.py for the Hydraulics data model

Django cheat sheet (interacting with the Database via Python)

You can create a new Django object by:

obj = ModelName(field_name=value)
obj.save()

Querying the database is very simple:
ModelName.objects.all() # get all objects

get objects with field_mame = value
ModelName.objects.filter (field_name=value)

get a single object with field_name = wvalue
ModelName.objects.get (field_name=value)

Entity Atiributes
Name D ipti Name D ipti type
River river River's name CharField
name Survey's name CharField
N participants Name of field particij CharField
Survey Field survey start_date Date on which survey started DateField
end_date Date on which survey ended DateField
Type of data (e.g.,
CollectedData SubsurfaceSed, |collected_data Surveyed river component CharField with choices
DO, Kf, etc)
. Sampling technique . Type of technique (e.g., FC: Freeze Core, OS: . ; .
SedSamplITechnique (for sediment) samp_techniques Surface Sample) CharField with choices
name Station's name CharField
river ForeignKey(River)
survey ForeignKey(Survey)
collected_data ManyToManyField(CollectedData)
date Date of measurement as YYYY-MM-DD DateField
description CharField
X X-coordinate (not in degrees) FloatField
y Y-coordinate (not in degrees) FloatField
A station where one coord_system epsg pnlx;ecllt.xn in which Xand Y are i CharField
oF OIS X epsad326 X-coordinate in EPSG:4326 computed automatically FloatField
A - with X and coord_system
MeasStation procedures were |y_epsgd326 Y-_coordlnale in EPSG:4326 computed automatically FloatField
undertaken in an x- w“_h b _a nd coord_system = =
y location on a date bed_« L wgs84 |El 1 of I_he nverbe(fl FloaiF!eId
and time. bed_elevation_dhhn DHHN (German) elevation of the riverbed FloatField
Position relative to the water boundary, "+" for wetted .
pos_rel WB loeations FloatField
discharge Flow discharge [m?/s] FloatField
wl.m in-situ water depth [m] FloatField
wl_model_m modelled depth level [m] FloatField
algae_cover Presence of algae covering substrate CharField with choices
imbrication Presence of sediment imbrication CharField with choices
bed_slope Bed slope [-] FloatField
meas_station ForeignKey(MeasStation)
sample_id Unique sample name CharField
sampling_method ForeignKey(SedSamplTechnique)
operator_name Name of person performing the measurement CharField
dm Mean grain size [mm] FloatField
dg Geometric mean grain size [mm] FloatField
fi Fredle index [mm] FloatField
std_grain dard deviation of grain sizes [-] FloatField
geom_std_grain Geometric standard deviation of grain sizes [-] FloatField
skewness Skewness of grain size distribution [-] FloatField
kurtosis Kurtosis of grain size distribution [-] FloatField
cu Coefficient of uniformity [-] FloatField
cC Curvature coefficient [-] FloatField
n_carling Porosity according to Carling & Reader (1982) FloatField
n_wu_wang Porosity according to Wu & Wang (2006) FloatField
n_wooster Porosity according to Wooster et al. (2008) FloatField
n_frings Porosity accoridng to Frings et al. (2011) FloatField
n_user Porosity according to Seitz et al. (2018) FloatField
d10 Sediment D10 [mm] FloatField
d16 Sediment D16 [mm] FloatField
d25 di D25 [mm] FloatField
SubsurfaceSed and di k I |d30 Sediment D30 [mm] FloatField
SurfaceSed data d50 Sediment D50 [mm] FloatField
déo Sediment D60 [mm] FloatField
d75 Sediment D75 [mm] FloatField
ds4 Sediment D84 [mm] FloatField
doo Sediment D90 [mm] FloatField
so Sorting coefficient [-] FloatField
comment Comment regarding sample/sampling CharField
percent_finer_250mm |Percentage of the sample finer than 250 mm FloatField
percent_finer_125mm |Percentage of the sample finer than 125 mm FloatField
percent_finer_63mm Percentage of the sample finer than 63 mm FloatField
percent_finer_31_5mm |Percentage of the sample finer than 31.5 mm FloatField
percent_finer_16mm Percentage of the sample finer than 16 mm FloatField
percent_finer_8mm Percentage of the sample finer than 8 mm FloatField
percent_finer_4mm Percentage of the sample finer than 4 mm FloatField
percent_finer_2mm Percentage of the sample finer than 2 mm FloatField
percent_finer_1mm Percentage of the sample finer than 1 mm FloatField
percent_finer_0_Smm |Percentage of the sample finer than 0.5 mm FloatField
percent_finer_0_25mm |Percentage of the sample finer than 0.25 mm FloatField
percent_finer_0_125mm |Percentage of the sample finer than 0.125 mm FloatField
percent_finer_0_063mm|Percentage of the sample finer than 0.063 mm FloatField
percent_finer_0_031mm|Percentage of the sample finer than 0.031 mm FloatField

Figure 2: Databasi attributes Part 1

meas_station

ForeignKey(MeasStation)

sample_id Unique sample name CharField
dp_position Double packer position ranging from 1 to 15 [-] IntegerField
e s sediment_depth_m Riverbed/Sediment depth [m] FloatField
Interstitial Dissolved |- —— - "
IDO Oxygen idoc_mgl Interstitial dissolved oxygen concentration [mg/L] FloatField
idoc_sat Interstitial dissolved oxygen saturation [%] FloatField
temp_c Interstitial water temperature [°C] FloatField
H_m Heigh of filter pipe above riverbed [m] FloatField
operator_name Name of person performing the measurement CharField
comment Comment regarding the measurement Charfield
meas_station ForeignKey(MeasStation)
sample_id Unique sample name CharField
: dp_position Double packer position ranging from 1 to 15 [-] IntegerField
Hydraulic r o Gimont depth.m |Riverbed/Sediment depth [m] FloatField
Kf Conductivity and - — n
suction tests data kf_ms Hydraulic Conductivity [m/s] FloatField
slurp_rate_avg_mls Slurping rate [ml/s] FloatField
H_m Heigh of filter pipe above riverbed [m] FloatField
operator_name Name of person performing the measurement CharField
comment Comment regarding the measurement CharField
meas_station ForeignKey(MeasStation)
sample_id Unique sample name CharField
V_X_ms Longitudinal velocity component [m/s] FloatField
v_y_ms Lateral velocity component [nV/s] FloatField
vV_z_ms Vertical velocity component [mVs] FloatField
Hydraulics Free-flow hydraulic |kt Turbulent kinetic energy in x, y, and z [m?/s?] FloatField
data kt_2d Turbulent kinetic energy in x, and y [m?/s?] FloatField
v_bulk Bulk flow velocity [m/s] FloatField
water_temperature Free-flowing-water temperature [°C] FloatField
operator_name Name of person performing the measurement CharField
comment Comment regarding the measurement CharField
ship_influence Presen(.:e of ship influence in the form of water level CharField with multiple choice
fluctuations
meas_station ForeignKey(MeasStation)
sample_id Unique sample name CharField
ph pH [-] FloatField
cod COD [mg/L] FloatField
WaterQual Water quality data [bod BOD [mg/L] FloatField
turbidity_ntu Turbidity [NTU] FloatField
temp_c Temperature [°C] FloatField
do_mgl Dissolved oxygen concentration [mg/L] FloatField
do_sat Dissolved oxygen saturation [%] FloatField
no_3 Nitrate (NO-3) concentration [mg/L] FloatField
meas_station ForeignKey(MeasStation)
sample_id Unique sample name CharField
macrozoobenthos_speci |Species of macrozoobenthos found, use comma to list .
. CharField
es more than one species
Biota Biotic attributes |macrozoobenthos_count Number, of macrozogbenthos foufid,/selcarme oslist CharField
more than one species
planting_species Plantings species observed CharField
fish_speoies Fish spec'ies observed, use comma to list more than CharField
one species
R —-— Number of fish redd§ observed, use comma to list CharField
= = more than one species
meas_station ForeignKey(MeasStation)
Morphology Mzrti’:sllsgl:al sample_id Unique sample name CharField
morph_features Morphological features (e.g., Wood logs) CharField
morph_unit Morphological unit (e.g., Riffle) CharField

Figure 3: Database attributes Part 2

To create a new Django model, you need to define a class in one of your Django app’s models.py file that
inherits from Django’s built-in models.Model class. Here is an example model class that defines a Book model
with fields for title, author, and publication date:

from django.db import models

class Book(models.Model):
title = models.CharField(max_length=200)
author = models.CharField(max_length=200)
pub_date = models.DateField()

Connecting the project with a database file stored in the cloud
(Example for AWS RDS)

« Install the psycopg2 library: Since AWS RDS supports PostgreSQL, you will need to install the psycopg2
library, which is a PostgreSQL adapter for Python, by running the following command:

pip install psycopg2-binary

e Configure the Django project settings: In your Django project’s settings.py file, you will need to
configure the database settings to connect to your AWS RDS instance. Here is an example configuration
for a PostgreSQL database:

DATABASES = {
'default': {
'ENGINE': 'django.db.backends.postgresql',
'NAME': 'your-db-name',

'USER': 'your-db-username',

'"PASSWORD': 'your-db-password',

'"HOST': 'your-db-endpoint.aws-region.rds.amazonaws.com',
'"PORT': '5432',

}

In the above configuration, you will need to replace your-db-name, your-db-username, and
your—db-password with your own values, and replace your-db-endpoint and aws-region with the
endpoint and region of your AWS RDS instance, respectively. You can find your RDS instance’s endpoint in
the RDS console.

e Migrate the Django project: Once you have configured your database settings, you will need to run the
following commands to migrate the Django project to the database:

python manage.py makemigrations
python manage.py migrate

These commands will create the necessary tables and columns in your database.

e Test the connection: Finally, you can test the connection to your AWS RDS instance by running the
following command:

python manage.py dbshell

This command will open a PostgreSQL shell that connects to your database. If the connection is successful,
you should see a prompt that looks like this:

psql (13.4, server 13.3)

SSL connection (protocol: TLSvl.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression: off)
Type "help" for help.

your-db-name=>

	River Analyst User Manual
	Installation
	Linux
	Windows

	Usage
	Database architecture
	Running the app

	Initializing a new database with template CSVs
	Django cheat sheet (interacting with the Database via Python)

	Connecting the project with a database file stored in the cloud (Example for AWS RDS)

