
River Analyst User Manual

River Analyst is a database application framework built with the Django web application framework (Python)
to leverage fast river ecosystem analyses.

Installation

Linux

• Clone this repository:

git clone https://github.com/beatriznegreiros/river-analyst.git

• Make sure to have pip3 and virtualenv installed by:

sudo apt update
sudo apt install python3-pip
pip3 install virtualenv

• Create new virtual environment:

python3.9 -m venv /path/to/new/virtual/environment

• Activate new virtual environment:

source /path/to/new/virtual/environment/bin/activate

• Install dependencies:

pip3 install -r requirements.txt

Windows

• Clone this repository:

git clone https://github.com/beatriznegreiros/river-analyst.git

• Make sure to have Anaconda installed.

• Create conda environment:

conda create --name [env_name] python=3.9

• Activate conda environment:

conda activate [env_name]

• Install dependencies:

pip3 install -r requirements.txt

Usage

Database architecture

RA database structure is composed of several tables (data models) such as IDO (Interstitial Dissolved
Oxygen), which is linked to a MeasPosition (measurement positions) via a foreign key. The figure below
illustrates the database architecture through an Entity-Relationship diagram:

1

https://www.djangoproject.com/
https://pypi.org/project/virtualenv/
https://docs.anaconda.com/anaconda/install/index.html

Figure 1: River Analyst database architecture

2

Figure 2 and 3 provide detailed descriptions of the several attributes within each of RA data models described
above.

Running the app

• Go to repository directory

cd path/to/river-analyst

• Make migrations (optional)

python3 manage.py migrate Obs.: Migrations are in principle python commands wrapped around
SQL passed from the Django framework to the sql database.

• Run the server locally

python3 manage.py runserver

• Create superuser for having full admin rights over the app:

python3 manage.py createsuperuser

Initializing a new database with template CSVs

• Add data to the csv templates under the path riveranalyst/river-analyst/media/
• cd to the riveranalyst/utils directory cd riveranalyst/utils
• Execute scripts to initialize targeted data models

– It is important to begin with populating the MeasPosition model, which is where all data models
connect:

∗ Here, it is crucial that the field meas_position is unique and contains no typos. This field will
be used to generate foreign keys to link data models. python fill_measpositions_tab.py

– Then, any data model can be populated afterwards, for instance:
∗ the field meas_position needs to match the names given in the MeasPosition data model.

· python fill_surf_tab.py for filling the SurfaceSed data model
· python fill_subsurf_tab.py for the SubSurfaceSed data model
· python fill_kf_tab.py for the Kf (Riverbed Hydraulic Conductivity) data model
· python fill_do_tab.py for the IDO (Interstitial Dissolved Oxygen) data model
· python fill_hydraulics_tab.py for the Hydraulics data model

Django cheat sheet (interacting with the Database via Python)

You can create a new Django object by:

obj = ModelName(field_name=value)
obj.save()

Querying the database is very simple:

ModelName.objects.all() # get all objects

get objects with field_name = value
ModelName.objects.filter(field_name=value)

get a single object with field_name = value
ModelName.objects.get(field_name=value)

3

Figure 2: Database attributes Part 1
4

Figure 3: Database attributes Part 2

5

To create a new Django model, you need to define a class in one of your Django app’s models.py file that
inherits from Django’s built-in models.Model class. Here is an example model class that defines a Book model
with fields for title, author, and publication date:

from django.db import models

class Book(models.Model):
title = models.CharField(max_length=200)
author = models.CharField(max_length=200)
pub_date = models.DateField()

Connecting the project with a database file stored in the cloud
(Example for AWS RDS)

• Install the psycopg2 library: Since AWS RDS supports PostgreSQL, you will need to install the psycopg2
library, which is a PostgreSQL adapter for Python, by running the following command:

pip install psycopg2-binary

• Configure the Django project settings: In your Django project’s settings.py file, you will need to
configure the database settings to connect to your AWS RDS instance. Here is an example configuration
for a PostgreSQL database:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql',
'NAME': 'your-db-name',
'USER': 'your-db-username',
'PASSWORD': 'your-db-password',
'HOST': 'your-db-endpoint.aws-region.rds.amazonaws.com',
'PORT': '5432',

}
}

In the above configuration, you will need to replace your-db-name, your-db-username, and
your-db-password with your own values, and replace your-db-endpoint and aws-region with the
endpoint and region of your AWS RDS instance, respectively. You can find your RDS instance’s endpoint in
the RDS console.

• Migrate the Django project: Once you have configured your database settings, you will need to run the
following commands to migrate the Django project to the database:

python manage.py makemigrations
python manage.py migrate

These commands will create the necessary tables and columns in your database.

• Test the connection: Finally, you can test the connection to your AWS RDS instance by running the
following command:

python manage.py dbshell

This command will open a PostgreSQL shell that connects to your database. If the connection is successful,
you should see a prompt that looks like this:

psql (13.4, server 13.3)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression: off)
Type "help" for help.

6

your-db-name=>

7

	River Analyst User Manual
	Installation
	Linux
	Windows

	Usage
	Database architecture
	Running the app

	Initializing a new database with template CSVs
	Django cheat sheet (interacting with the Database via Python)

	Connecting the project with a database file stored in the cloud (Example for AWS RDS)

